CHEMISTRY

Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	43

Question	Answer	Mark
1(a)	$\begin{array}{ll} \mathrm{Cu} & {[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}} \\ \mathrm{Cu}^{2+} & {[\mathrm{Ar}] 3 \mathrm{~d}^{9}\left(4 \mathrm{~s}^{\circ}\right)} \end{array}$	
1 (b)(i)	ligand exchange/replacement/displacement/substitution	1
1(b)(ii)	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ blue and $\left[\mathrm{CuCl}_{4}\right]^{2-}$ yellow OR yellow/green OR green/yellow	1
1(b)(iii)	tetrahedral	1
1(b)(iv)	$K_{\text {stab }}=\left[\mathrm{CuCl}_{4}{ }^{2-}\right] /\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}\right][\mathrm{C} t]^{4}$	1
1(c)(i)	a species that contains two lone pairs that (each) form a co-ordinate / dative bond OR are donated (to a metal ion/atom)	
1(c)(ii)	equilibrium 2 lies more to the RHS / favours forward reaction more	1
1(d)(i)	optical	1
1(d)(ii)	3D correct for octahedral one correct structure with 3D second correct with 3D	1

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	43

Question	Answer	Mark
		3
1(e)(i)	Ione pair receive/accepts a proton $/ \mathrm{H}^{+}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
1(e)(ii)	$\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+2 \mathrm{HCl} \rightarrow \mathrm{ClH}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$ OR $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{+} \mathrm{H}_{3}$	
1(f)(i)	amide bond, displayed or - $\mathrm{CONH}-$ rest of the molecule with continuation bonds	1 1 2
1 (f)(ii)	condensation/addition-elimination	
1(f)(iii)	any named polyalkene/eg polyethene, PVC allow Bakelite or Kevlar	1
		20

Question	Answer		Mark
2(a)	solid remains		1
2(b)	stability increases (down the group) as size / radius of (metal) ion/ $\mathbf{M ~}^{\mathbf{2 +}}$ increases so polarisation/distortion of anion/carbonate ion decreases		1 1 1
2(c)(i)			2
2(c)(ii)	$\mathrm{CaCN}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NH}_{3}$ CaCO_{3} correct equation		11$2$
		Total:	8

Question	Answer	Mark
3(a)(i)	(entropy) increases/is positive and $\mathrm{H}_{2} /$ gas is formed	1
3(a)(ii)	(entropy) increases/is positive and ($\mathrm{KCl}(\mathrm{aq}$)) solution has (free) moving/mobile ions/aqueous ions	1
3(a)(iii)	(entropy) decreases/is negative and decrease in gas	1
3(b)(i)	$\begin{aligned} & \Delta S^{\ominus}=26.9+214-65.7=(+) 175.2\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & \Delta G^{\ominus}=117-(298 \times 175.2 / 1000) \mathrm{OR} \Delta G^{\ominus}=117000-(298 \times 175.2) \\ & \Delta G^{\ominus}=+64.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	1 1 1
3(b)(ii)	$\mathrm{T} \Delta S$ is more positive than $\Delta H / \mathrm{T} \Delta S$ increases / $-\mathrm{T} \Delta S$ more negative and ΔG is negative / decrease/less positive	1
3(c)	$\begin{aligned} & \text { use of } \Delta G=0 \text { or } \frac{\mathrm{T} \Delta S}{\Delta H}=1 \\ & \mathrm{~T}=130 /(316 / 1000)=410 / 411 / 412 / 411.4(\mathrm{~K}) \end{aligned}$	1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9701	43

Question	Answer	Mark
3(d)	hydration enthalpy and lattice energy both more endothermic/more positive/less exothermic/less negative (down the group) $\Delta H_{\text {hyd }}$ decreases more/faster and $\Delta H_{\text {sol }}$ becomes (more) endothermic/(more) positive/less exothermic/less negative	1
		1

Question	Answer	Mark
4(a)	(an element) forming one or more (stable) ions or compounds or oxidation states with partially filled/incomplete d orbitals	1
4(b)(i)	A $\mathrm{Co}(\mathrm{OH})_{2} \mathrm{OR} \mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ B $\left[\mathrm{CoCl}_{4}\right]^{2-}$ C $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \mathrm{OR} \quad\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ two correct = 1 mark three correct = 2 marks	2
4(b)(ii)	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ pink solution of B blue solution of \mathbf{C} brown/yellow/orange	

```
Page 7 Mark Scheme 年 Syllabus Paper
Cambridge International AS/A Level - October/November 2016
\begin{tabular}{|l|l|r|}
\hline Question & \multicolumn{1}{|c|}{ Answer } & Mark \\
\hline & \begin{tabular}{l} 
two correct = 1 mark \\
three correct = 2 marks
\end{tabular} & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 8 & Mark Scheme & Syllabus & Paper \\
& Cambridge International AS/A Level - October/November 2016 & 9701 & 43 \\
\hline
\end{tabular}

\begin{tabular}{|r|r|r|}
\hline Question & Answer & Mark \\
\hline & & 2 \\
\hline & & Total: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 10 & Mark Scheme & Syllabus & Paper \\
\hline & Cambridge International AS/A Level - October/November 2016 & 9701 & 43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Question & \multicolumn{4}{|c|}{Answer} & Mark \\
\hline 5(a)(i) & \multicolumn{4}{|l|}{\[
(100 / 22.1) \times(0.7 / 1.1) \text { or } \frac{100 \times 0.7}{22.1 \times 1.1} \text { or } 2.87 / 2.88 / 2.9
\] 3 carbon atoms} & 1 \\
\hline 5(a)(ii) & \multicolumn{4}{|l|}{\(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}\)} & 1 \\
\hline \multirow[t]{4}{*}{5(b)} & absorption / \(\mathrm{cm}^{-1}\) & appearance of the peak & type of bond & functional group & \multirow{4}{*}{2} \\
\hline & 3350 & broad and strong & OH or \(\mathrm{O}-\mathrm{H}\) & alcohol/ROH & \\
\hline & 2680 & very broad and strong & OH or \(\mathrm{O}-\mathrm{H}\) & (carboxylic) acid \(/ \mathrm{CO}_{2} \mathrm{H}\) & \\
\hline & 1725 & strong & \(C=O\) & (carboxylic) acid \(/ \mathrm{CO}_{2} \mathrm{H}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 11 & Mark Scheme & Syllabus & Paper \\
\hline & Cambridge International AS/A Level - October/November 2016 & 9701 & 43 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Page 12 & Mark Scheme & Syllabus & Paper \\
\hline & Cambridge International AS/A Level - October/November 2016 & 9701 & 43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Question & \multicolumn{3}{|r|}{Answer} & Mark \\
\hline \multirow[t]{4}{*}{5(d)(ii)} & \multicolumn{2}{|l|}{\begin{tabular}{|c|c|}
\hline isomer & number of peaks \\
\hline
\end{tabular}} & & \multirow[b]{3}{*}{1
1} \\
\hline & P & 4 & & \\
\hline & Q & 4 & & \\
\hline & & & & 2 \\
\hline \multicolumn{4}{|c|}{Total:} & 15 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|}
\hline Question & \multicolumn{1}{|c|}{ Answer } & Mark \\
\hline 6(a) & \begin{tabular}{l} 
ibuprofen: carboxylic acid / carboxyl \\
paracetamol: phenol and amide \\
any two \(=1\) mark \\
all three \(=2\) marks
\end{tabular} & \\
\hline 6(b)(i) & (chiral centre is a) carbon OR atom that has four different groups/atoms/species attached to it & \(\mathbf{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 13 & Mark Scheme & Syllabus & Paper \\
\hline & Cambridge International AS/A Level - October/November 2016 & 9701 & 43 \\
\hline
\end{tabular}
Question
\begin{tabular}{|c|c|c|}
\hline Question & Answer & Mark \\
\hline 6(d)(i) & (reagent D) \(\mathrm{Na}_{2} \mathrm{CO}_{3} /\) any carbonate (reagent E ) \(\mathrm{Cl}_{2} / \mathrm{Br}_{2}\) & \[
\begin{aligned}
& 1 \\
& 1
\end{aligned}
\] \\
\hline 6(d)(ii) &  & \[
1
\] \\
\hline 6(d)(iii) &  & \[
1
\] \\
\hline \(6(\mathrm{e})(\mathrm{i})\) & \(\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{+}+\mathrm{AlCl}_{4}^{-}\) & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 15 & Mark Scheme & Syllabus & Paper \\
\hline & Cambridge International AS/A Level - October/November 2016 & 9701 & 43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Question & \multicolumn{2}{|l|}{Answer} & Mark \\
\hline 6(e)(ii) & \begin{tabular}{l}
curly arrow from ring system to \(\mathrm{CH}_{3} \mathrm{CO}^{+}\) \\
correct intermediate \\
curly arrow from C-H bond into ring
\end{tabular} & & \[
1
\] \\
\hline 6(e)(iii) & electrophilic substitution & & 1 \\
\hline & & Total: & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 16 & Mark Scheme & Syllabus & Paper \\
\hline & Cambridge International AS/A Level - October/November 2016 & 9701 & 43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Question & Answer & Mark \\
\hline 7(a) & \[
\begin{aligned}
& \text { moles of thiosulfate }=0.1 \times 20.8 / 1000=2.08 \times \mathbf{1 0}^{-3} \\
& \text { moles of } \mathrm{ClO}^{-} \text {in } 25 \mathrm{~cm}^{3} \text { portion }=2.08 \times 10^{-3} / 2=1.04 \times 10^{-3} \\
& \text { (moles of } \left.\mathrm{ClO}^{-} \text {in } 250 \mathrm{~cm}^{3}=1.04 \times 10^{-2}\right) \\
& \text { concentration of } \mathrm{ClO}^{-}=1.04 \times 10^{-2} /(10 / 1000)=\mathbf{1 . 0 4}\left(\mathrm{mol} \mathrm{dm}^{-3}\right)
\end{aligned}
\] &  \\
\hline 7(b)(i) & starch & 1 \\
\hline 7(b)(ii) & blue OR black to colourless & 1 \\
\hline 7(b)(iii) & towards/close to the end-point of the titration/when the solution goes yellow & 1 \\
\hline 7(c) & moles of \(\mathrm{O}_{2}=82 / 24000=3.42 \times 10^{-3}=\) moles \(\mathrm{ClO}^{-}\)ions concentration of \(\mathrm{ClO}^{-}=3.42 \times 10^{-3} /(5 / 1000)=0.68 / 0.683 / 0.684\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)\) & 1 \\
\hline 7(d)(i) & \[
K_{\mathrm{c}}=\frac{\left[\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}\right]\left[\mathrm{HClO}_{3}\right]^{3}}{\left[\mathrm{C}_{3} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{3}}
\] & 1 \\
\hline 7(d)(ii) & (position of eqm) moves to the right/forward reaction predominates/more HClO made (as [HClO] decreases) no effect on \(K_{\mathrm{c}}\) & \[
1
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 17 & Mark Scheme & Syllabus & Paper \\
\hline & Cambridge International AS/A Level - October/November 2016 & 9701 & 43 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Question & \multicolumn{2}{|l|}{Answer} & Mark \\
\hline 7(d)(iii) & \begin{tabular}{l}
\[
2 \mathrm{HClO} \rightarrow 2 \mathrm{HCl}+\mathrm{O}_{2}
\] \\
OR \(2 \mathrm{HClO} \rightarrow \mathrm{H}_{2}+\mathrm{Cl}_{2}+\mathrm{O}_{2}\)
\end{tabular} & & 1 \\
\hline 7(e)(i) & \begin{tabular}{l}
addition of acid: \(\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}\) \\
\(\mathrm{OR} \mathrm{H}+\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\) \\
addition of base: \(\mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}\) \\
\(\mathrm{OR} \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}\) and position of eqm moves to the right \\
\(\mathrm{OR} \mathrm{OH}+\mathrm{HCO}_{3}{ }^{-} \rightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}\)
\end{tabular} & & \\
\hline 7(e)(ii) & \[
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\left(\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\right) \\
& {\left[\mathrm{H}^{+}\right]=\left(7.94 \times 10^{-7}\right) \times 1 / 9.5=8.36 \times 10^{-8}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=7.08
\end{aligned}
\] & &  \\
\hline & & Total: & 16 \\
\hline
\end{tabular}```

